
Laboratoire Kastler Brossel
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The context : ultracold quantum gases

Ultracold atomic gases as many-body systems

• dilute gases but interacting atoms
• experimental flexibility : trapping potential, interactions, density, ...
• microscopic properties well-characterized
• well-isolated from the external world

Bose-Einstein condensates :

Superfluid gas
“Atom laser”

JILA, MIT, Rice (1995)

Optical lattices :

Superfluid-Mott insulator
transition

Munich 2002

BEC-BCS crossover :

Condensation of fermionic
pairs

JILA, MIT, ENS (2003-2004)

Many other examples :

• gas of impenetrable bosons in 1D,
• disordered systems, ...

• non-equilibrium many-body dynamics,



Superfluid-Mott insulator transition for bosons

Optical lattices :

interference pattern can be used to trap atoms in a periodic
structure

Bosons in the Bose-Hubbard regime :

1 Quantum tunneling favor delocalization

2 Repulsive on-site interactions favor localization

Quantum phase transition from a superfluid, Bose-condensed
ground state to a Mott insulator
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Greiner et al., Nature 2002.

Energy/Temperature scales : nanoKelvin
Time scales ∼ 10 ms



Orbital magnetism of electronic systems

Vector potential A in quantum mechanics : Ĥ =
(p̂−qA)2

2m
, ∇×A = B

Electrons in a magnetic field exhibit many different and fascinating effects :

• Landau diamagnetism, Shubnikov-De
Haas oscillations,

• Vortices in type II superconductors,

• Coherence in mesoscopic physics, ...

• Quantum Hall effect (integer and
fractional)

Fractional Quantum Hall effect:

Emergence of strongly correlated phases of matter :

• incompressible liquids (gap)

• Exotic excitations with fractional charge and
statistics (“anyons”)

• Very similar Quantum Hall states are predicted
for ultracold atomic gases [Cooper, Adv. Phys. 2008].

Laughlin state
Dubail, Read, Rezayi,

PRB 2012

Key elements : flat dispersion relation and interactions



Rotating Bose-Einstein condensates

What about neutral particles (atoms) ?

Mathematical identity between Coriolis and Lorentz force :

FCoriolis = mv ×Ω FLorentz = qv ×B

Rotation around z, rotation rate Ω Magnetic field along z, strength |B|

Rotating superfluid atomic gases :

• Formation of quantized vortices

• Ordering into triangular vortex lattice
ENS MIT

Madison et al. Abo-Shaeer et al.

PRL 2000 Nature 2001

Rapidly rotating atomic gases (bosonic and fermionic) :
• Theory : strongly correlated ground states akin to fractional quantum Hall phases

[Cooper, Adv. Phys. 2008]

• Experiments : so far unable to reach this regime.



Aharonov-Bohm and geometric phases

Can we explore orbital magnetism with electrically neutral atoms ?

Vector potential A in
quantum mechanics :

Ĥ =
(p̂− qA)2

2m

∇×A = B

Aharonov-Bohm phase:

φAB =
q

~

∫
C
A · dl =

q

~

∫
S
B · dS

What about neutral particles (atoms) ?

• Orbital magnetism can be simulated by generating geometric phases

φgeo ≡
1

~

∫
S

(qB)eff · dS

• Coherent atom-light coupling in quantum optics

Review articles : J. Dalibard, F. Gerbier, P. Ohberg, G. Juzeliunas, RMP 2011

N. Goldman, G. Juzeliunas, P. Ohberg, I. Spielman, Rep. Progress. Physics 2014



Coherent atom-light interaction

Two-level atom and monochromatic light :

• two internal states g and e
• Hamiltonian after rotating wave approximation :

ĤRWA =

(
0 ~ΩL

2
e−iϕ

~ΩL
2
eiϕ −δL

)
,

g

e

ΩL

h̄ωeg

h̄δL

Lowest eigenstate with energy E− = − 1
2
~Ω = − 1

2

√
Ω2
L + δ2

L :

|φ−〉 = sin

(
θ

2

)
|g〉 − eiϕ cos

(
θ

2

)
|e〉

where cos(θ) = δL
Ω
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Adiabatic preparation :

θ = π −→ θ = 0

|φ−〉 = |g〉 −→ |φ−〉 = −eiϕ|e〉



Harper Hamiltonian for a charged particle on a tight-binding lattice

Bulk :

Ĥ =
(p̂− qA)2

2m

∇×A = B

Tight-binding lattice :

H = −
∑
〈ri,rj〉

JeiφAB(ri→rj)â†i âj + h.c.

J : single-particle tunnel energy

J J

Jei2πα(y+1)

Je−i2παy
y

x

Landau gauge : A = −Byex

Complex tunnel coefficients:

φAB(ri → rj) =
q

~

∫ rj

ri

A · dl

α =
|q|Bd2

h
=

Magnetic flux/unit cell
Magnetic flux quantum

α =

{
∼ 10−4 in usual solids with ∼ 50 T
∼ 2π in solid-state superlattices or cold atoms.



Hofstadter butterfly

Energy spectrum vs flux :

Flux per unit cell : 2πα

• Fragmentation of the Bloch bands

• wide gaps, flat bands

Rational flux α = p/q :

Magnetic unit cell (1× q) : q topological bands with Chern number C 6= 0:
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Panorama of experimental methods
Floquet approach

• Fast modulation in the Hamiltonian at Ω, induced “micromotion” at the same
frequency

• Slow (“secular”) motion governed by an effective Hamiltonian Heff

Ĥeff ≈
Ω

2π

∫ 2π/Ω

0
Ĥ(t)dt

• Shaken optical lattices Pisa, Hamburg, Zürich, Chicago, ...

• Sliding optical lattices : Munich, MIT

“Quantum optics” approach
• internal states coupled by one or two-photon transitions
• affects the external state as well due to the recoil effect

• Adiabatic dressing (bulk systems)NIST 2008

• Synthetic dimensions NIST, Florence 2015

• laser-induced tunneling in optical lattices Rustekovski, Dunne, Javanainen (1998-2000); Jaksch
and Zoller (2003); Gerbier and Dalibard (2010).

• Most of the schemes (proposed and realized) rely on optical lattices,

• All involve breaking some symmetry of the “bare” lattice Hamiltonian and
projection onto a low-energy subspace.



Topological phases of matter

Phase of matter characterized by one (or more) integer-valued Topological invariants
linked to certain physical properties.

• gapped phase (band gap in fermionic insulators)

• robustness with respect to microscopic changes (as long as the gap do not close)

• Bulk-edge correspondence :
• Edge-state channels in a bounded geometry, which carry current (or heat or ...)

• Protected against scattering

• Number of channels determined by topological properties of the bulk

Materials/Phases that are insulating in the bulk, but with a perfect (or very good...)
conducting surface

Note that these phases usually escape the standard classification of phases in
condensed matter using the concept of order parameter and Landau theory.



Snapshots of experiments using the Floquet approach

Lattice shaking :

Vlat(x, t) = −V0 cos [kL(x− x0(t)]

Staggered flux in hexagonal lattices :

Figures from J. Struck et al., Hamburg
Also Pisa, Chicago, Zürich, Munich, ...

Sliding lattice :

W (x, t) = W0 cos [δk · r −∆ωt]

Staggered flux in square lattices :

M. Aidelsburger et al. (Munich), 2012

Uniform flux in square lattices :

M. Aidelsburger et al. (Munich), 2015
Similar experiments at MIT (Ketterle group)



Quantized Hall Conductivity and Chern Number

Hall conductivity : current along x flowing in response to an applied electric field Ey
along y, jx = σHEy

Linear response (Kubo formalism) for fermionic insulators (Fermi energy inside a gap) :

σH =
e2

h
×

∑
εn(k)<EF

Cn

Cn: Chern number of the nth band
Necessarily an integer !
Topological invariant that do not change by smooth deformation of the Hamiltonian

Topological classification of surfaces in 3D space :
Surfaces in ordinary 3D space can be classified by their genus (≡ number of handles) :

Mapping (x, y)→ S(x, y)

Gauss-Bonnet formula :
∫
S G = 4π(1− g)

G : Gaussian curvature

Mapping (kx, ky)→ Ĥ(k)

Chern formula :
∫

BZ B(k) = C

B : Berry curvature



Measuring the Chern number of Hosftadter bands with hot bosons

• apply additional “electric field” V = F · r [F : constant force]

• B 6= 0 : additional deflection of the c.o.m. transverse to F , x ∝ FCt

Transverse displacement after one period TB = C× lattice spacing

Munich experiment : Aidelsburger et al., Nat. Phys. 2014

• Hofstadter lattice with α = 1/4

• bandwidth� kBT � band gap

P0 ≈ 1 =⇒ C0 ≈ 0.9(1)

Direct measurements of Berry curvature: Fläschner et al., Science 2016

see also : Duca et al., Science 2014.



Synthetic dimensions

Internal degree of freedom (Zeeman states) ≡ sites of a fictitious lattice

Two-photon Raman transition ≡ hopping in a tight-binding model

References : M. Mancini et al.; B. Stuhl et al., Science 2015
Figure taken from the LENS experiment (Mancini et al.)

• Allows to study four-dimensional physics !

• System size necessarily small in the synthetic dimension

• Interactions are local in real space, of “infinite range” in the synthetic dimension



Bosons in topological bands

Generally we expect bosons at low T to condense into the single-particle minima.

α = 0, 1/2 : BEC observed

2D: Struck et al., Nature Physics 2012

3D :Kennedy et al., Nature Physics 2015

Experiments with α 6= 0, 1/2 : BEC does
not survive, lowest band (almost) uniformly
filled (T � bandwidth)

Kennedy et al. (MIT)

• Heating generally observed in shaking
experiments (timescale ∼ 50 ms)

• redistribution of the “micromotion”
energy by collisions

• possibly off-resonant transfer from the
ground to higher bands ?

• Currently under active investigation in
several experimental groups



Summary

• Realization of topological band structures with cold atoms

• Two broad classes of approaches :

• Floquet methods with rapidly modulated potentials,

• “Quantum optics” methods using coherent manipulation of the atom internal degrees of
freedom.

• Experiments have demonstrated single-particle effects tied to the topological band
structure.

• The goal of studying strongly interacting topological phases is still elusive :
heating issues encountered in experiments must be resolved.

• Non-Abelian gauge potentials can also be realized using similar techniques :

• Spin-orbit coupling, 2D or 3D Kane and Hasan, RMP 2010

• Topological superfluids : Pairing interaction required

• p−wave order parameter

• zero-energy modes behaving as Majorana fermions



Towards topological insulators with cold atoms ?

• fermionic band insulator with the Fermi energy inside a gap

• topological band structure

Chern insulators : topological invariant= Chern number

• integer Quantum Hall states (yet to be demonstrated with cold atoms)

• Haldane insulator (realized by the ETH Zürich group)

Many more possibilities with non-Abelian gauge potentials :

• Spin-orbit coupling, 2D or 3D Kane and Hasan, RMP 2010

• Topological superfluids : Pairing interaction required

• p−wave order parameter

• zero-energy modes behaving as Majorana fermions



Towards atomic fractional Quantum Hall states ?

Relevant parameter :
ν =

atomic density
flux per unit cell

=
n

α

• Analogue of continuum (≡ Lowest Landau level) states exist.

Example : Laughlin states
• fermions : ν = 1

3 , · · ·
• bosons : ν = 1

2 , · · ·

Sorensen et al., PRL 2005

Hafezi et al., PRA 2007, EPL 2008

Palmer, Klein, Jaksch, PRL 2006; PRA 2008

Möller, Cooper, PRL 2009 ...

• Many possible states without continuum counterparts [Möller and Cooper, PRL 2009].

Example for α = 1
5

:

• Laughlin state for particles at n = 1
10

• Laughlin state for holes at n = 1− 1
10

Gaps are small :

at most ∼ 0.1J for the ν = 1
2

bosonic Laughlin state
[Hafezi et al., PRA 2007]

Narrow slices in the global phase diagram

Mott n = 1

vacuum

ν = 1
2 for holes

ν = 1
2 for particles

µ
/U

J/U



Ytterbium team at LKB

M. Bosch

Aguilera

J. Beugnon R. Bouganne E. Soave

(now Innsbruck)

FG

A. Ghermaoui

Former
members :

Q. Beaufils

A. Dareau

D. Doering

M. Scholl

E. Soave

Some recent works :
• Revealing the Topology of Quasicrystals with a Diffraction Experiment

[Dareau et al., Phys. Rev. Lett. 119, 21530 (2017).

• Clock spectroscopy of interacting bosons in deep optical lattices
[Bouganne et al., New J. Phys. 19, 113006 (2017).



Rabi spectroscopy on the clock transition : time domain

Strong driving: Rabi oscillations of a BEC in the optical domain
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Total atom number : N ≈ 8× 104

For much lower atom numbers : N ≈ 8× 103

0 5 10
Time [ms]

0

5000

10000

A
to
m

nu
m
be

r

Ne



Ytterbium and clock transition

Optical atomic clock technology to study many-body phenomena

Level structure of Ytterbium

• ”clock” transition 3 :
J = 0→ J ′ = 0

• virtually no spontaneous emission

→ coherent manipulation
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State-dependent 2D optical lattice

• y lattice at “magic”
wavelength : Ve(y) = Vg(y)

• x lattice at “anti-magic”
wavelength :
Ve(x) = −Vg(x)

x

y
≡ |g〉 ≡ |e〉

J

J

J

J

J

J

• regular tunneling
along y

• supressed tunneling
along x

λx = 610 nm

λy = 759.5 nm



Laser-induced tunneling in a state-dependent optical lattice
Proposal for alkali atoms in [Jaksch and Zoller, NJP 2003]

• two internal states g and e

• state-dependent potential confining the atoms
at distinct places depending on their internal
state g

φg
e

φe

h̄ωeg

x
Xg Xe

ωL,kL

Coupling laser |g;Rg〉 → |e;Re〉:
〈e;Re|V̂AL|g;Rg〉 ∝ eikL·

Rg+Re
2

Not enough to get
∮
A · dl 6= 0, but good starting point !

Coherent driving of the clock transition : Bouganne et al., NJP 2017
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